Action for Reinforcement of Transitional Waters' Environmental Integrity (ARTWEI) Workshop on 23. June 2010 in Szczecin, Poland

Activities and Perspectives of water quality management in transitional waters

- the Oder/Odra Estuary -

Gerald Schernewski & Nardine Stybel

Leibniz-Institute für Baltic Sea Research Warnemünde Coastal & Marine Management Group

EUCC – The Coastal Union Germany

Projects & activities

- 1. 2007-2009 KKW Lubmin: Auswirkungen auf den Greifswalder Bodden. Forschungsauftrag des StAUN Stralsund
- 2. 2008-2Hydrodynamice & Organism-Transport mation Space for Environment). 19 Partnerinstitute aus 11 Staaten (Gesamtbudget: ca. 10 Mio.) (Partner und Fallstudienkoordinator).
- ³ Integrated Coastal Zone Management (ICZM)
- 2007-2010 BMBF-Projekt IKZM-Oder II & III (Forschung für ein integriertes Küstenzonen-management in der Odermündungsregion)' (Gesamt-Budget: ca. 1.200.000 €). Konsortium aus 10 Instituten verschiedener Fachrichtungen in Deutschland (Antragsteller und Projektkoordinator).
- 5. 2007 Eutrophication & Ecosystem-modeling tion for COastal System Assessment) Konsortium aus 54 internationalen Partnern (Gesamt-Budget: ca. 12 Mio. €) (Partner und Koordinator der regionalen Fallstudie).
- 6. 2009-2012 ERA -NET BONUS Projekt AMBER (Assessment and Modeling of Baltic Ecosystem Response) 10 internationale Partnerinstitute (Gesamtbudget: ca 2Mio. €)
- 2009-2012 Interreg IV-Projekt BaltCICA (Climate Change: Impacts, Costs and Adaptation in the Baltic Sea Region). 24 Partnerinstitute aus 8 Staaten (Gesamt-Budget: ca. 6 Mio. €).
- 2009-2014 BICLIMATE Change Coast & Sea n für die deutsche Ostseeküste) 11 national Verbundpartner (Gesamt-Budget ca. 9 Mio €) (Koordinator der naturwissenschaftlichen Forschung).

Tourism

Szczecin Lagoon: Eutrophication

IT

Schernewski (2000, 2001)

GENESIS (EU-FP7) (GENeric European Sustainable Information Space for Environment)

Objectives

- Development of a model system that allows the spatial and temporal simulation of past and present problems with humanpathogenic organisms as well as scenario-simulations.
- Exemplary application of the model system to show its potential for spatial risk assessment, the analysis and evaluation of spatial water quality problems and as a decision support tool for authorities.
- Provision of this model system for the internet-based GENESIS-Environmental Information System, to allow end-users to carry out own applications.

The model system:

General Estuarine Transport Model (GETM)

Input: river discharges (Oder, Uecker, Peene);
 meteorology; boundary conditions
Output: flow field (and others), Format: NetCDF

 General Individuals Tracking Model (GITM) (off-line Lagrangian particle tracking routine)

Input: Flow-fields, number, location and properties of particlesOutput: Trajectories of particles

Challenges: New pathogen stems e.g. *Escherichia coli* bacteria *O157*

Escherichia coli (E. coli), an intestine bacteria, has the ability to survive outside the body for short periods and is an ideal indicator organism for fecal contamination.

E. coli 0157

Emerged in Europe in the 1990's and can produce severe, potentially lifethreatening, illness (Coia, 1998).

Source: Wikipedia

Case study Ueckermünde beach 1. Allocation and quantification of *E.coli* sources

Uecker

Bathing & seagulls

alweg

Seagulls & fisheries

Cattle

Coastal: STETTINER HAFF, UECKERMUENDE

Case study Ueckermünde beach 2. Flow field simulations

a) Surface flow (Wind: SW 3 m/s)

Case study Ueckermünde beach: *4. E.coli* survival experiments

Case study Ueckermünde beach: 7. *E.coli* average pollution map

Perspectives

- Model applications in the Odra river mouth and the coastal Baltic Sea
- Simulations with other problematic organisms: Salmonella, Vibrions

IKZM-Oder (BMBF) (Integrated Coastal Zone Management in the Oder estuary region) AMBER (ERA-NET BONUS) (Assessment and Modeling of Baltic Ecosystem Response)

Some questions

Oder

- > How did the long-term eutrophication history look like?
- To what extent can the nutrient load in the Oder River be reduced?
- Can we reach a good water quality status according to the EU Water Framework Directive in the river, in the lagoon and in the coastal Baltic Sea?
- How could a cost-effective nutrient load reduction look like?
- What is the role of coastal waters in nutrient retention and transformation?

The Oder/Odra estuary

- A coastal region
- > characterized by a complex pattern of land, lagoons and sea
- divided between Germany and Poland and
- dominated by the Oder/Odra river basin

Managing eutrophication

Approach

- Development of scenarios visions what will or could happen in the river basin and how management could look like
- Application of models (MONERIS, a river basin water and nutrient flux model and ERGOM, a 3D hydrodynamic model with an ecological module)

(implemention until 2015, cost-effective measures, realistic policy)

- The emissions from point sources in the entire river basin meet the requirements of the Urban Waste Water Treatment Directive (91/271/EEC). The following thresholds shall not be exceeded: BOD = 25 mg O2/I, COD = 125 mg O2/I, SS = 35 mg/I, P = 2 mg/I, N = 15 mg/I for municipalities with a population ranging between 10,000 and 100,000; 1 mg P/I and 10 mg N/I for municipalities with more than 100,000 inhabitants.
- Phosphorus free detergents are standard in Poland and Czech Republic.
- Best management practices on arable land are implemented to reduce the load from diffuse sources.
- Soil erosion is strongly reduced. Conservation tillage is applied on all arable land in the Oder basin.
- The nitrogen surplus (difference between nitrogen fertilization and uptake by plants) is decreased by 20-30 %.

MONERIS: A nutrient flux model

Optimal nutrient load reduction: Phosphorus

- About 45 % reduction compared to 2000
- Loads like in the late 1950's

Optimal nutrient load reduction: Nitrogen

- About 35 % compared to 1995
- Loads like in the late 1960's

Water quality objectives in the river

A "good water quality" in the river is a realistic objective, but will this cause a good status in coastal waters as well?

ERGOM – a 3D hydrodynamic & ecosystem model

(after Neumann et al. 2002)

Schernewski (2007)

Eutrophication history: Comparison 1960 to 2000

Some results

- Nutrient removal in the lagoon via **denitrifikation** is reduced from 26 % (1960's) to 15 % (1999-2002). An increase of denitrification in the coastal Baltic Sea took place.
- N-Fixation does not play an important role in the lagoon. It was higher in the 1960's. Heavy blue-green blooms can contribute up to 30% of the monthly river load.
- Limitation: A temporal shift and changes in nutrient availability took place. However, a lasting nutrient limitation can not be assumed.

Water quality in the lagoon

IKZM

Oder

Adapted after Vollenweider (1976)

BaltCICA (Baltic Sea Region Programme) (Climate Change: Impacts, Costs and Adaptation in the Baltic Sea Region)

RADOST (BMBF-Procekt) (Regional Adaptation Strategies for the German Baltic Coast)

- Modell simulations on regional Climate Change impact
- Analysis of ecological and practical consequences
- Development of adaptation strategies

Example: Climate Change effect on the Szczecin Lagoon

- Discharge is most important for nutrient loads. Climate Change projections show shifts between seasons but minor changes in annual precipitation
- Climate Change will have an effect on internal processes in the lagoon

Example: Effects of future land-use changes

SPICOSA (EU-FP6)

(Science and Policy Integration for COastal System Assessment)

- Development of a self-evolving, operational research approach framework for the assessment of policy options for the sustainable management of coastal zone systems
- Application to eutrophication management in the Oder/Odra river basin - coastal zone system with focus on internal measures in the Szczecin Lagoon

Lagoon management: Zebra mussels

- ➢ Biomass: 68,000 t
- Coverage in the German part: 2.4 %
- Average abundance on beds:
 4000 mussels per m²
- Filtration rate: 1083 l m⁻² d⁻¹
- After 2 years
 - size: 12 14 mm (max. 30)
 - weight: 0.5 1 g (max. 2.5 g)

- Enhancement of filtration capacity by cultivating on long lines or nets (increase of mussels from 4000 - 6400 per m²)
- Improved water transparency by higher filtration capacity
- Harvesting of 6.4 kg mussels per m² every 2 years
- Removing of 1% N per mussel (64 g N per m²)
- Mussels / mussel shells could be used for: human food, animal feed and fertilizer

Lagoon Management

Questions

- To what extent can internal management measures in the lagoon increase nutrient retention and improve water quality (transparency)?
- How efficient are mussel farming and mussel beds (compared to other measures like dredging, makrophyte belts or algals)?

Scenarios

- a) Maximum coverage with mussel (*Dreissena*) farms (2-4 m water depth)
- b) Coverage to reduce the N-river loads by 10 %
- c) Existing mussel beds

SPICOSA

Methods of mussel farming

Smartfarm

Long lines

Costs: 30,000-38,000 Euro per ha

Thank you for your attention !!

Some recent publications

Schernewski, G., Behrendt, H., Neumann, T. (2008): An integrated river basin-coast-sea modelling scenario for nitrogen management in coastal waters. J Coast Conserv, DOI: 10.1007/s11852-008-0035-6, 12: 53-66.

Schernewski G., T. Neumann, S. Maack & M. Venohr (in press): Gewässereutrophierung. Fränzle, Müller & Schröder (Hrsg.) Handbuch der Umweltwissenschaften, Wiley –VCH Verlag.

- Schernewski G., T. Neumann & H. Behrendt (in press): Sources, dynamics and management of phosphorus in a southern Baltic estuary. In: J. Harff, S. Björck & P. Hoth : The Baltic Sea Basin as a natural Laboratory. Springer
- Schernewski, G., T. Neumann, Dieter Opitz & Markus Venohr (submitted): Long-term eutrophication history and functional changes in a large Baltic river basin estuarine system. Estuaries and Coasts
- Stybel, N., Fenske, C., Schernewski, G. (2009): Mussel cultivation to improve water quality in the Szczecin Lagoon. Journal of Coastal Research, SI 56
- Voss, M., Dippner, Korth, Neumann, Opitz, Schernewski, Venohr (submitted): History and future development of Baltic Sea eutrophication. Estuarine, Coastal and Shelf Science